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We produce and study several sequences of equations, in the language of orthomodular
lattices, which hold in the ortholattice of closed subspaces of any classical Hilbert space,
but not in all orthomodular lattices. Most of these equations hold in any orthomodular
lattice admitting a strong set of states whose values are in a real Hilbert space. For
some of these equations, we give conditions under which they hold in the ortholattice
of closed subspaces of a generalised Hilbert space. These conditions are relative to the
dimension of the Hilbert space and to the characteristic of its division ring of scalars. In
some cases, we show that these equations cannot be deduced from the already known
equations, and we study their mutual independence. To conclude, we suggest a new
method for obtaining such equations, using the tensorial product.
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quantum computation.
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1. INTRODUCTION

If H is a classical Hilbert space, a subspace M of H is topologically closed
iff it is orthogonally closed, i.e., if it coincides with its biorthogonal. Let us denote
by C(H) the ortholattice of the closed subspaces of a Hilbert space H.

The variety of orthomodular lattices (OMLs) is an algebraic generalization of
the class of ortholattices of the form C(H). This variety is obtained by adding only
one new equation to those of ortholattices, the orthomodularity. This equation is
very powerful and allows to extend to general OMLs many properties relative to
ortholattices of the form C(H), and also to extend the definitions of mathematical
entities, such as states and observables, useful in the Hilbert space approach to
quantum mechanics.

But it was known for a long time that there are equations holding in otholat-
tices of the form C(H) but not in general OMLs (see Godowski, 1981; Godowski
and Greechie, 1984; Mayet, 1985, 1986). More recently (Megill and Pavic̆ić,

1 Institut Camille Jordan, UMR 5208 du CNRS, Université Lyon 1, 69622 Villeurbanne Cedex, France;
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2000), some more results have been published, motivated by the possible reper-
cussions to quantum computing problems.

In the following, the set of all equations holding in all OMLs of the form
C(H), but not in every OML, will be denoted by E .

In Section 3, we recall the different known results about E , with some com-
ments. The rest of the paper is devoted to several sequences of new equations in
E . In fact, some of them, in particular those of Theorem 4.1 were already pre-
sented and studied in Mayet (1987), but have never been published elsewhere. As
concern these equations, we study problems of independence and we show that
some of them, when interpreted in generalized Hilbert lattices, may be regarded
as conditions on the dimension together with the characteristic of the underlying
division ring.

2. ORTHOMODULAR LATTICES AND GENERALIZED
HILBERT LATTICES

Let us recall some basic facts of the theory of orthomodular lattices. For more
details the reader may consult Kalmbach (1983) or Pták, and Pulmannová (1990).

An OML is an algebra (L, 0, 1,∨,∧,⊥ ), where (L, 0, 1,∨,∧) is a bounded
lattice, and ⊥ is an antitone (i.e., such that a ≤ b implies b⊥ ≤ a⊥) and invo-
lutive unary operation so that a ∨ a⊥ = 1 (which implies a ∧ a⊥ = 0), and the
orthomodular law a ∨ b = a ∨ (a⊥ ∧ (a ∨ b)) holds true. The class of OMLs is a
variety which contains the variety of Boolean algebras. Two elements a, b of an
OML are said to be orthogonal (a ⊥ b) if a ≤ b⊥ (or, equivalently, if b ≤ a⊥).
For any a, b in an OML, we will use the notation a → b for a⊥ ∨ (a ∧ b).

If a, b are two elements of an OML, one says that a and b commute if a =
(a ∧ b) ∨ (a ∧ b⊥), or equivalently if b = (b ∧ a) ∨ (b ∧ a⊥). A triple (a, b, c) of
elements of an OML such that one of these elements commutes with both two
others is distributive, which means that, for any permutation (u, v,w) of (a, b, c),
u ∧ (v ∨ w) = (u ∧ v) ∨ (u ∧ w) and u ∨ (v ∧ w) = (u ∨ v) ∧ (u ∨ w).

If D is a subset of an OML whose any two elements commute, the sub-
OML generated by D is a Boolean algebra. A block of an OML is a maximal
Boolean subalgebra. Any finite OML L may be represented by its Greechie di-
agram (Kalmbach, 1983), a hypergraph, whose vertices correspond to the atoms
and whose edges represent the blocks of L. Here we will use such diagrams only
in the simplest case described in Greechie (1971).

The following results about orthomodular spaces and generalized Hilbert
lattices can be found in Piron (1963); Varadowajan (1984); Keller (1985); Grass
and Künzi) (1985); Soler (1995); Holland (1995).

Let K be a division ring equipped with an involutive anti-automorphism
denoted by *, and let H be a left vector space over K . A Hermitian form on H is
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a mapping 〈., .〉 from H × H to K such that:

(a) for any y in H, the mapping x 	→ 〈x, y〉, from H to K is linear;
(b) for all x, y in H, 〈y, x〉 = 〈x, y〉∗;
(c) if x ∈ H is such that 〈x, y〉 = 0 for any y ∈ H, then x = 0.

The vector space H, when equipped with a Hermitian form, is called a
Hermitian space. Two vectors x, y of the Hermitian space (H, 〈., .〉) are said to
be orthogonal, which is denoted x ⊥ y, if 〈x, y〉 = 0. For any subset S of H,
the set {x ∈ H : ∀y ∈ S, x ⊥ y}, is always a subspace of H, which is denoted by
S⊥. A subspace M of H is called closed if it is of the form S⊥ or equivalently
if M = M⊥⊥. Every finite dimensional subspace is closed. The Hermitian space
(H, 〈., .〉) is called orthomodular if, for any closed subspace M , H is the direct
sum of M and M⊥: H = M ⊕ M⊥, and this implies that the Hermitian form
is anisotropic: 〈x, x〉 = 0 implies x = 0. In this case, 〈x, y〉 is called the scalar
product of x and y.

Let (H, 〈., .〉) be an orthomodular space (also called generalized Hilbert
space) over K . Then the set C(H) of all closed subspaces of H, when ordered
by inclusion and equipped with the involution M 	→ M⊥, is a complete, atomic,
irreducible orthomodular lattice satisfying the covering law (Piron 1963), in which
the meet and join of two elements are defined by: M ∧ N = M ∩ N and M ∨ N =
(M + N )⊥⊥ . An ortholattice L isomorphic to such an OML C(H) is called a
generalized Hilbert lattice (GHL). In the particular case where H is a classical
Hilbert space over R, C, or H respectively the field of real numbers, the field of
complex numbers and the skew field of quaternions, endowed with their natural
conjugations), H is always orthomodular, and then any OML isomorphic to C(H)
is called a classical Hilbert lattice (HL). Notice that in Section 1 above, we deal
only with classical Hilbert lattices.

Any orthomodular lattice L, of height at least 4, satisfying the above four
properties (complete, atomic, irreducible, satisfying the covering law), is a GHL.

In the finite-dimensional case, and for any division ring K , (H, 〈., .〉) is ortho-
modular iff the Hermitian form 〈., .〉 is anisotropic and in this case it is quite easy
to construct nonclassical orthomodular spaces. But this condition of anisotropy is
not sufficient in the infinite dimensional case. However, it has been shown (Keller,
1980), (Grass, et al., 1985) that there exist many infinite-dimensional nonclas-
sical orthomodular spaces. In particular, for any characteristic of the underlying
division ring K , there are examples of nonclassical orthomodular spaces of any
finite-dimension, and also of infinite dimension (Grass, et al., 1985).

If H is any orthomodular space and if M ∈ C(H), since H = M ⊕ M⊥,
every x ∈ H has a unique representation of the form x = x1 + x2, with x1 ∈
M and x2 ∈ M⊥, and this allows to define the (orthogonal) projection mapping
prM : H 	→ M by prM (x) = x1, which is obviously linear. It is easily seen that
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if M1, . . . ,Mk ∈ C(H) are mutually orthogonal, then for any x ∈ M1 ∨ · · · ∨ Mn,
x = prM1 (x) + · · · prMn

(x).
Solèr proved in (1995) the following outstanding result:

An infinite-dimensional orthomodular space over K is a classical Hilbert space if
and only if it contains a γ -orthogonal system, where γ is a nonzero element of K ,
that is a sequence (en)n∈N of pairwise orthogonal vectors such that, for any n ∈ N,
〈en, en〉 = γ .

This shows in particular that in a nonclassical orthomodular space H , if x is
any nonzero vector, there is generally no vector u ∈ Kx such that 〈u, u〉 = 1K ,
and that if y is a nonzero vector orthogonal to x there is generally no v ∈ Ky such
that 〈v, v〉 = 〈x, x〉.

3. ORTHOARGUESIAN EQUATIONS AND EQUATIONS
RELATED TO STATES

All the equations we are dealing with here are equations in the theory of
OMLs.

In the theory of OMLs, any inequality a ≤ b is obviously equivalent to the
identity a = a ∧ b. Moreover, it is sometime useful to write an equation under the
form of an implication, as follows: if x1, . . . , xn are n variables, E(x1, . . . , xn)
an equation and I ⊆ {1, · · · n} × {1, . . . , n}, then the formule: (∀(i, j ) ∈ I, xi ⊥
xj ) ⇒ E(x1, . . . , xn) is equivalent to an equation (cf. Mayet, 1986, Lemma 1).

Let E and E′ be two equations, and let F be a set of equations. The equation
E is called a consequence of F if E holds in any OML in which each equation in
F holds, otherwise E is said to be independent of F . We say that E is stronger
than E′ (and that E′ is weaker than E) if E′ is a consequence of {E}. If E is
stronger than E′, and if E′ is not stronger than E, we say that E is strictly stronger
than E′, and that E′ is stricly weaker than E. If each of the two equations E, E′

is stronger than the other one, then these two equations are said to be equivalent.
We recall that E denotes the set of equations which hold in any classical

Hilbert lattice, but not in all OMLs.
The first equation in E was found in 1975 by A. Day (unpublished). It is the

orthoarguesian equation denoted by OA:

(ai ⊥ bi, i = 1, 2, 3) ⇒ (a1 ∨ b1) ∧ (a2 ∨ b2) ∧ (a3 ∨ b3)

≤ b1 ∨ (a1 ∧ (a2 ∨ [t1,2 ∧ (t1,3 ∨ t2,3)])) (OA)

where ti,j = (ai ∨ aj ) ∧ (bi ∨ bj ).
Since that time, several related equations in E have been obtained in a similar way.
The first one, denoted here by OA’ (Godowski, 1984) is strictly weaker than OA:

(ai ⊥ bi, i = 1, 2) ⇒ (a1 ∨ b1) ∧ (a2 ∨ b2) ≤ b1 ∨ (a1 ∧ (a2 ∨ t1,2)) (OA′)
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More recently, Megill and Pavic̆ić (2000), have obtained more equations of
the same family, and in particular an infinite sequence (nOA)n≥3 of generalized
orthoarguesian equations such that 3OA and 4OA are, respectively, the above
equations OA’ and OA.
The proof of the fact that an equation of this family holds in all HLs uses essen-
tially the decomposition of a vector on orthogonal subspaces together with basic
applications of the associativity and commutativity of the addition of vectors, and
the inclusion M + N ⊆ M ∨ N = (M + N )⊥⊥ for any M,N in a HL.

Let us recall, for instance, how it can be proved that OA’ holds in any HL.
Let us assume that ai and bi , i = 1, 2 are elements of a HL L such that ai ⊥ bi .
Let x ∈ (a1 ∨ b1) ∧ (a2 ∨ b2). If for i = 1, 2, we define xi = prai

(x) and yi =
prbi

(x), then x = x1 + y1 = x2 + y2. Observing that x1 = x2 + (y2 − y1), and that
y2 − y1 = x1 − x2 ∈ (a1 ∨ a2) ∧ (b1 ∨ b2) = t1,2, we obtain that x = x1 + y1 ∈
b1 ∨ (a1 ∧ (a2 ∨ t1,2)), and it follows that OA’ holds true.

The key of this proof is that the relations x1 = x2 + z with z = y2 − y1 =
x1 − x2 has allowed us to transform the obvious initial equation:

(ai ⊥ bi, i = 1, 2) ⇒ (a1 ∨ b1) ∧ (a2 ∨ b2) ≤ b1 ∨ a1

into OA’ by substituting to the unique instance of the variable a1 in the right
hand side of the inequality, the term a1 ∧ (a2 ∨ t1,2). We observe that, using the
relation x1 = y2 + z′, where z′ = x2 − y1 = x1 − y2 (or x1 = −y1 + x) we can
also replace an instance of a1 on the right hand side of the inequality by a1 ∧ (b2 ∨
((a1 ∨ b2) ∧ (a2 ∨ b1))) (or by a1 ∧ (b1 ∨ ((a1 ∨ b1) ∧ (a2 ∨ b2))), respectively).

Now, let us suppose the supplementary hypothesis a3, b3 ∈ L, with a3 ⊥ b3,
and assume that x ∈ (a1 ∨ b1) ∧ (a2 ∨ b2) ∧ (a3 ∨ b3). Then x = x3 + y3, where
x3 = pra3 (x) and y3 = prb3 (x). We observe that the vector z = y2 − y1 = x1 −
x2 can be written z = (y2 − y3) + (y3 − y1) where y2 − y3 = x3 − x2 ∈ t2,3 and
y3 − y1 = x1 − x3 ∈ t1,3. This show that, starting from the equation:

(ai ⊥ bi, i = 1, 2, 3) ⇒ (a1 ∨ b1) ∧ (a2 ∨ b2) ∧ (a3 ∨ b3) ≤ b1 ∨ (a1 ∧ (a2 ∨ t1,2))

which is an obvious consequence of OA’, and replacing the term t1,2 on the right-
hand side of the inequality by t1,2 ∧ (t1,3 ∨ t2,3), we obtain that equation OA holds
true. For each n ≥ 1, equation OAn can be deduced from OAn−1 in a similar way
(cf. Megill and Pavic̆ić, 2000).

In the above proofs, starting from an obvious inequality, we have carried
out some substitutions on the right-hand side of this inequality. Each of these
substitutions is justified by some basic calculations using only the associativity
and the commutativity of the addition of vectors. In fact, we may carry out any
finite number of such substitutions: in each case, we obtain an equation holding
not only in all HL, but more generally in any GHL, since in a GHL the proof
is exactly the same. For instance, if we replace, in the term of the left-hand side
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of OA, some occurrences of a1 by a1 ∧ (a3 ∨ ((a1 ∨ a3) ∧ (b1 ∨ b3))), the new
equation obtained holds in every GHL.

Moreover, this may be generalized by using decompositions of an orthomod-
ular space into direct sums of n pairwise orthogonal closed subspaces, with n ≥ 2.
Let us illustrate with a simple example this general method.

Let us start from the obvious relation:

(a1 ⊥ b1, a2 ⊥ b2, b2 ⊥ c2, a2 ⊥ c2) ⇒ (a1 ∨ b1) ∧ (a2 ∨ b2 ∨ c2) ≤ a1 ∨ b1

If we imagine that a1, b1, a2, b2, c2 are elements of a HL (or of a GHL) satisfy-
ing the above relations of orthogonality, and that x ∈ (a1 ∨ b1) ∧ (a2 ∨ b2 ∨ c2),
then x = x1 + y1 = x2 + y2 + z2, where xi = pai

(x), yj = pbj
(x) and z2 =

pc2 (x). The relations y1 = x2 + (y2 + z2 − x1) = y2 + (x2 + z2 − x1) = z2 +
(x2 + y2 − x1) allow us (for instance) to replace the first instance of b1 on the right-
hand side of the inequality, successively by b1 ∧ t1, b1 ∧ t2, and b1 ∧ t3, where t1 =
a2 ∨ ((a1 ∨ b2 ∨ c2) ∧ (a2 ∨ b1)), t2 = b2 ∨ ((a1 ∨ a2 ∨ c2) ∧ (b1 ∨ b2)), and t3 =
c2 ∨ ((a1 ∨ a2 ∨ b2) ∧ (b1 ∨ c2)). In this way, we obtain the following equation:

(a1 ⊥ b1, a2 ⊥ b2, b2 ⊥ c2, a2 ⊥ c2) ⇒ (a1 ∨ b1) ∧ (a2 ∨ b2 ∨ c2)

≤ a1 ∨ (b1 ∧ t3 ∧ t2 ∧ t1)

which holds in any GHL. By setting c2 = 0 in this equation, we obtain an equation
obviously stronger than OA’, which proves that this equation belongs toE . Then the
problem is to compare this equation with other equations obtained by this method.

In short, this general method allows to obtain very simply a lot of new
equations in E , since for each new substitution we obtain a stronger equation
belonging to E . We will denote by E0 the set of all equations in E obtained by
applying this method. Each equation in E0 holds in any GHL. Unfortunately, the
problem of the hierarchy between these equations seems to be very difficult. In
Megill and Pavic̆ić, 2000, the authors have shown that OA2 is strictly stronger
than OA by using massive calculations by computer.

We will see in Section 4 that a slight generalisation of this method allows to
obtain significant equations in E , which are easier to study.

A real-valued state on an OML L is a mapping s from L to the real closed
interval [0, 1] such that s(1L) = 1, and for any a, b ∈ L such that a ⊥ b, s(a ∨
b) = s(a) + s(b). The OML L admits a strong (or rich) set of real-valued states
if, for any elements a, b of L such that a �≤ b, there exists a real-valued state s on
L such that s(a) = 1 and s(b)〈1. Any HL admits a strong set of real-valued states:
in a HL, if a �≤ b, and if u is a unit vector in a \ b, then the mapping su defined,
for c ∈ L by su(c) = 〈u, prc(u)〉 = 〈prc(u), prc(u)〉 is a real-valued state (called
a “pure state”) such that su(a) = 1 and su(b)〈1.

Godowski (1981), starting from a sequence of finite OMLs without a strong
set of real-valued states, discovered a sequence (Gn)n≥3 of equations in E such
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that, for each n, Gn+1 is strictly stronger than Gn. For each n ≥ 3, the equation
Gn may be written as follows:

a1 ⊥ a2 ⊥ a3 ⊥ · · · ⊥ a2n ⊥ a1 ⇒
(a1 ∨ a2) ∧ (a3 ∨ a4) ∧ · · · ∧ (a2n−1 ∨ a2n) ≤ a2n ∨ a1 (Gn)

In Mayet (1986), the result of Godowski was generalized into a general method,
allowing to obtain by an effective procedure, for each OML L whithout a strong
set of real-valued states, an equation holding in any OML with a strong set of real-
valued states, and failing in L. As any HL admits a strong set of real-valued states,
the equations obtained in this way all belong to E . In Mayet (1986) were given
some examples for illustrating the method, but the corresponding equations where
shown by Megill and Pavic̆ić (2000) to be consequences of Godowski’s equations.
These authors have even expressed some doubts about the existence of equations
obtained by this method that are not consequences of those of Godowski, but they
report that, since then, they have obtained such equations (unpublished).

4. A SEQUENCE OF NEW EQUATIONS

Let L = C(H) be any GHL, let n ≥ 3 be an integer, and let
a1, . . . , an, b1, . . . , bn be elements of L satisfying the following set of conditions,
denoted by (�):

∀i, j ∈ {1, . . . , n}, i �= j, ai ⊥ aj, and ∀i ∈ {1 · · · n}, ai ⊥ bi (�)

To be short, let us define:

a = a1 ∨ · · · ∨ an b = b1 ∨ · · · ∨ bn q = (a1 ∨ b1) ∧ · · · ∧ (an ∨ bn).

Let x ∈ a ∧ q. Let us define, for i = 1 · · · n, xi = prai
(x) and yi = prbi

(x). Then

x = x1 + y1 = · · · = xn + yn = x1 + · · · + xn.

and it follows that (n − 1)x = y1 + · · · + yn. Hence, if (n − 1)1K �= 0K , in other
words if the characteristic of the underlying division ring K is not a divisor of
n − 1, we conclude that x ∈ b = b1 ∨ · · · ∨ bn, which proves that a ∧ q ≤ b.

Now, let us assume that (n − 1)1K = 0K , and let us separate two cases.

a) Let us suppose that the orthomodular space H is of dimension ≤ n − 1.
Then, since the subspaces a1, · · · an are pairwise orthogonal, there exists
i ∈ {1, . . . , n} such that ai = {0}. Therefore, q ≤ bi ≤ b, and it follows
that the relation a ∧ q ≤ b holds true.

b) On the other hand, let us suppose that the dimension of H is at least n. Let
u1, . . . , un be n pairwise orthogonal vectors in H, and, for i = 1 · · · n, let
ai and bi be the 1D subspaces of H generated by ui and vi = ∑

j �=i uj ,
respectively.
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Then u = u1 + · · · + un is a nonzero vector in a ∧ q. Let us suppose that u ∈ b.
As b1, . . . , bn are 1D, b = b1 + · · · + bn, hence there exists λ1, . . . , λn ∈ K such
that, if we define λ = λ1 + · · · + λn,

u = λ1v1 + · · · + λn, vn = (λ − λ1)u1 + · · · + (λ − λn)un

hence, by the unicity of the representation of u as a linear combination of the
vectors u1, . . . , un, which are linearly independent,

λ1 = · · · = λn = λ − 1K.

It follows that λ = λ1 + · · · λn = n(λ − 1K ) = (n − 1)(λ − 1K ) + λ − 1K = λ −
1K , and we obtain 1K = 0K , a contradiction.
This proves that the relation a ∧ q ≤ b fails in L.
Let us summarize these results in the following Theorem.

Theorem 4.1. Let n ≥ 3 be an integer, let a1, . . . , an, b1, . . . , bn be 2n variables
and let (�) be the set of conditions of orthogonality: for i, j ∈ {1, . . . , n}, i �= j ,
ai ⊥ aj , and for i = 1, . . . , n, ai ⊥ bi .
Let us define the terms a = a1 ∨ · · · ∨ an, q = (a1 ∨ b1) ∧ · · · ∧ (an ∨ bn), and
b = b1 ∨ · · · ∨ bn.
Let us denote by En the equation:

(�) ⇒ a ∧ q ≤ b (En)

Let H be any orthomodular space, and K be its scalar division ring.
Then the following two statements are equivalent:

(i) the equation En holds in C(H);
(ii) the dimension of H is at most n − 1, or (n − 1)1K �= 0K .

In particular, En holds in any classical Hilbert lattice.

The fact that these equations En does not hold in every GHL shows that they
are not of the same kind as those studied in Section 2. More precisely we have the
following obvious result:

Theorem 4.2. For any integer n ≥ 3 the equation En is not a consequence of
the set E0 of all equations obtained by the general method described in Section
3, even if we add the modularity. In particular, En cannot be deduced from the
orthoarguesian law and all its generalizations.

Proof. Let n ≥ 3, let k be a prime divisor of n − 1, and let H be an orthomodular
space of dimension n over a field K of characteristic k. Then (n − 1)1K = 0K ,
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hence the equation En fails in C(H) while any equation in E0 holds in this OML,
and the modular law too. �

Equation En may be written when n = 2, but then it is without any interest
since it holds in any OML. Indeed, if a1, a2, b1, b2 are any elements of an OML
such that a1 ⊥ a2, a1 ⊥ b1 and a2 ⊥ b2, then, for (i, j ) = (1, 2) and (i, j ) = (2, 1),
since aj and bi both commute with ai , we have, by a special case of distributiv-
ity in OMLs, (ai ∨ aj ) ∧ (ai ∨ bi) = ai ∨ ci , where ci = aj ∧ bi . It follows that
(a1 ∨ a2) ∧ (a1 ∨ b1) ∧ (a2 ∨ b2) = (a1 ∨ c1) ∧ (a2 ∨ c2). Then, since any two el-
ements of {a1, a2, c1, c2} commute, there exists a block containing {a1, a2, c1, c2},
and by easy Boolean calculations, we obtain (a1 ∨ c1) ∧ (a2 ∨ c2) = c1 ∨ c2 ≤ b1

∨ b2.

The method used to prove that equation En holds in any GHL is very close to
the method described in Section 3, and used for orthoarguesian equations: we have
decomposed the vector x ∈ a ∧ q into the sum of its projections onto mutually
orthogonal subspaces, in different ways; after some calculations (a little less
basic than in the first case) we have obtained that x ∈ b1+ · · · + bn ⊆ b1 ∨ · · ·
∨bn = b.

Now, we will see that these equations can also be obtained by a method using
Hilbert-space-valued states.

5. HILBERT-SPACE-VALUED STATES

Let L be any OML. By a Hilbert-space-valued state (H-state) on L, we mean
a mapping s from L to a classical Hilbert-space H, such that ||s(1L)|| = 1 (where
||.|| is the norm defined as usual on H by ||x|| = √〈x, x〉) and, for any a, b ∈ L,

a ⊥ b ⇒ s(a) ⊥ s(b) and s(a ∨ b) = s(a) + s(b).

According to whether the underlying field of H is R, C or H, the H-state s is
called a RH-state, a CH-state, or a QH-state, respectively. We say that an OML L
admits a strong set of RH-states if there exists a real Hilbert-space H such that, for
any two elements a, b in L satisfying the condition a �≤ b, there exists a H-valued
state s on L such that ||s(a)|| = 1 and ||s(b)||〈1. We have similar definitions by
replacing the field R by C or H.

Let (H, 〈., .〉) be a complex Hilbert-space. Then H can be considered as a
vector space H′ over R, and then, when equipped with the scalar product 〈., .〉′
defined by 〈x, y〉′ = R(〈x, y〉) (where R(λ) denotes the real part of the complex
number λ), is a real Hilbert-space. If s : L 	→ H is a CH-state on an OML L,
it is easy to verify that s, when viewed as a mapping from L to H′, is a RH-
state. Moreover, since for any x ∈ H, 〈x, x〉 = 〈x, x〉′, it is easily seen that if L
admits a strong set of H-valued CH-states, then it admits a strong set of H′-valued
RH-states. Conversely, if H is a real Hilbert-space whose B is a Hilbertian basis,
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one defines the complexification H′′ of H as being the complex Hilbert-space
admitting B as Hilbertian basis. It is easily seen that a H-valued RH-state s on
an OML L, when viewed as a mapping from L to H′′, is a H′′-valued state. It
follows that if L admits a strong set of H-valued RH-states, then it also admits
a strong set of H′′-valued CH-states. Moreover, it is not difficult to see, in the
same way, that L admits a strong set of QH-states iff it admits a strong set of
RH-states.

If H is any Hilbert-space, then, for any unit vector u ∈ H, the mapping
a 	→ pra(u) from C(H) to H is a H-state su on C(H) such that for any b ∈ C(H),
su(b) = u iff u ∈ b. Since for any a, b ∈ C(H) such that a �⊆ b there exists a unit
vector u ∈ a \ b it follows that the Hilbert lattice C(H) admits a strong set of
H-states, hence, by the remark above, C(H) admits a strong set of RH-states.

For all these reasons, we will restrict ourselves, in the sequel, to the study of
RH-states.

If s is a RH-state on an OML L, then, for any a ∈ L, s(a) + s(a⊥) = e1,
where e1 = s(1) and s(a) ⊥ s(a⊥), hence ||s(a)||2 + ||s(a⊥)||2 = 1, which proves
that ||s(a)|| ≤ 1 and that ||s(a)|| = 1 ⇔ s(a) = e1. This also shows that if s(a) ⊥
e1 then s(a) = 0. Moreover, if a, b are any two elements of L such that a ⊥
b, then ||s(a ∨ b)||2 = ||s(a)||2 + ||s(b)||2, which shows that the mapping a 	→
||s(a)||2 = 〈s(a), s(a)〉 is a real-valued state on L. It follows also that if a ≤ c then
||s(a)|| ≤ ||s(c)||. In particular, if a ≤ c and s(a) = e1, then ||s(c)|| = 1 hence
s(c) = e1. It also follows that if L admits a strong set of RH-states, then L admits
a strong set of real-valued states.

Let us assume that s1 is a two-valued state on L, that is to say a real-valued
state whose only values are 0 and 1. Then, if H is any real nonzero Hilbert-space,
and if e1 is a unit vector in H, by setting, for any a ∈ L, s(a) = s1(a)e1, we obtain
a RH-state.

Theorem 5.1. There is an effective procedure allowing to obtain, from each
finite OML L without a set of RH-states, an equation holding in all OMLs with a
strong set of RH-states (hence in particular in all classical Hilbert lattices), which
fails in L.

Proof. This Theorem can be proved in the same way as Theorem 1, (b) in
Mayet (1986), in the particular case of OMLs without strong set of real-valued
states, which is illustrated by examples 2 and 3 in Section 8 of Mayet (1986).
The procedure obtained here is very similar to the one given in Mayet (1986).
Therefore, we will not give the proof of Theorem 5.1, but, as an illustration, we
will show how equations En can be obtained in this way. �

Let n ≥ 3 be an integer, and let us consider the OML Ln whose Greechie
diagram is given in Fig. 1.
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Fig. 1.

Theorem 5.2. For any n ≥ 3 the OML Ln does not admit a strong set of RH-
states. The corresponding equation, obtained by Theorem 5.1, which holds in any
OML with a strong set of RH-states and fails in Ln, is the equation En.

Proof. Let s be a RH-state on Ln, such that s(u) = e1 where e1 is a unit
vector. Then e1 = s(a1) + · · · + s(an), and, for i = 1, . . . , n, e1 = s(ai) + s(bi)
(since (ai ∨ bi)⊥ ⊥ u, hence s(ai ∨ bi)⊥ = 0 and s(ai ∨ bi) = e1). It follows
that s(a1) + · · · + s(an) + s(b1) + · · · + s(bn) = ne1 = e1 + s(b1) + · · · + s(bn),
and therefore s(b1) + · · · s(bn) = (n − 1)e1. For i = 1 · · · n, we have v ⊥ bi ,
thus s(v) ⊥ s(bi). It follows that s(v) ⊥ s(b1) + · · · + s(bn) = (n − 1)e1, hence
s(v) = 0 and s(v⊥) = e1. Since u �≤ v⊥, this proves that Ln does not admit a
strong set of RH-states. Let us show that, by using the same procedure as in Mayet
(1986) in order to construct from Ln an equation of E , we obtain equation En.
In the diagram of Fig. 2 are represented all the hypotheses needed for proving
that, for any RH-state s on Ln, ||s(u)|| = 1 ⇒ ||s(v⊥)|| = 1, with the following
understanding:

i) atoms which must be supposed only to be mutually orthogonal are linked
together by a dotted line;

ii) if we must use the fact that some atoms are exactly the atoms of a block,
these atoms are linked together by a continuous line.
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Fig. 2.

The diagram of Fig. 2 means that, if ai, bi, ci (for i = 1 · · · n), u and v are
any elements of any OML L, such that:

– for i = 1 · · · n, ai, bi, ci are mutually orthogonal and ai ∨ bi ∨ ci = 1;
– a1, . . . , an are mutually orthogonal and a1 ∨ · · · ∨ an = 1;
– u ⊥ ci for i = 1, . . . , n;
– v ⊥ bi for i = 1, . . . , n;

then it can be proved that, for any RH-state s on L satisfying s(u) = s(1), we have
s(v⊥) = s(1). This is easy to verify, since the proof is almost the same as above.
The equation corresponding to the above diagram can be written as follows:

(�1) ⇒ u ∧ (a1 ∨ · · · ∨ an) ∧ (a1 ∨ b1 ∨ c1) ∧ · · · ∧ (an ∨ bn ∨ cn) ≤ v⊥ (
E1

n

)

where (�1) is the set of all orthogonality relations appearing in the diagram of Fig.
2. Here, we cannot assume that a1 ∨ · · · ∨ an = a1 ∨ b1 ∨ c1 = · · · = an ∨ bn ∨
cn = 1, but we have added these terms on the left-hand side t of the inequality, in
order that, for any RH-state s such that s(t) = s(1), we have also s(a1 ∨ · · · ∨ an) =
s(a1 ∨ b1 ∨ c1) = · · · = s(an ∨ bn ∨ cn) = s(1), which allows us to prove, in the
same way as above, that the equation E1

n holds in any OML with a strong set of
RH-states.

Equation E1
n is not exactly identical to equation En, but for obtaining En from

E1
n, we need only make some slight modifications. We must delete in (�1) all the

conditions of the form ai ⊥ ci , bi ⊥ ci , u ⊥ ci and replace in the inequality ci by
(ai ∨ bi)⊥, and u by (a1 ∨ b1) ∧ · · · ∧ (an ∨ bn). Then, all the terms of the form
(ai ∨ bi ∨ ci) on the left-hand side of the inequality must be deleted. Moreover,
we must remove in (�1) all the conditions of the form v ⊥ bi and replace v by
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b⊥
1 ∧ · · · ∧ b⊥

n . After all these modifications we obtain exactly equation En, and it
is easy to verify that En is equivalent to E1

n in the theory of OMLs.
However, let us verify that En holds in any OML with a strong set

of RH-states. Let L be any OML with a strong set of RH-states, and let
a1, . . . , an, b1, . . . , bn be elements of L satisfying the conditions of orthog-
onality (�). Let us define a = a1 ∨ · · · ∨ an, q = (a1 ∨ b1) ∧ · · · ∧ (an ∨ bn)
and b = b1 ∨ · · · ∨ bn. Let s be a RH-state on L such that s(a ∧ q) = e1,
where e1 = s(1). Then, since a ∧ q ≤ a, s(a) = s(a1) + · · · + s(an) = e1, and,
for i = 1, . . . , n, since a ∧ q ≤ ai ∨ bi , s(ai ∨ bi) = s(ai) + s(bi) = e1. We in-
fer, exactly as above, that s(b⊥) = 0 hence s(b) = e1. Since L admits a strong set
of RH-states, this shows that a ∧ q ≤ b thus that equation En holds in L.

If a1, · · · an, b1, . . . , bn are elements of Ln defined as shown in Fig. 1, then
all the conditions (�) hold true, and a ∧ q = u �≤ v⊥ = b, therefore En fails in
Ln. �

We notice that both Theorems 4.1 and 5.2 show that equations En belong to E ,
but, although their proofs are quite similar, they are different: the first one asserts
that equations En hold in any GHL (except in very particular cases), whereas
the second one states that these equations hold in all OMLs with a strong set of
RH-states.

Let us denote by ER and ERH , the set of all equations in E which hold in
any OML with, respectively, a strong set of real-valued states and a strong set of
RH-valued states. Since any OML with a strong set of RH-states admits a strong
set of real-valued states, we have the inclusion ER ⊆ ERH . We will see hereafter
that this inclusion is strict.

Lemma 5.3. Let k be an integer ≥ 3. For any two atoms c, d ∈ Lk , such that
c �⊥ d, (c, d) �= (u, v) and (c, d) �= (v, u) (cf. Fig. 3) there exists a two-valued
state s on Lk such that s(c) = s(d) = 1.

Proof. Let us notice first that Lk (cf. Fig. 3) admits many symmetries (or
involutive automorphisms). One of them, σ , is such that σ (u) = v, and, for
i = 1, . . . , k, σ (ui) = vi (hence σ (ci) = ci). Other symmetries, denoted by σi,j for
i, j ∈ {1, . . . , k} and i〈j are characterized by the relations σi,j (u) = u, σi,j (v) = v,
σi,j (ui) = uj , σi,j (ul) = ul for any l �= i, j .

Let c, d be two atoms of Lk such that c �⊥ d, (c, d) �= (u, v) and (c, d) �=
(v, u). Each of the two diagrams in Fig. 4 depict a two-valued state s on Lk ,
being understood that the black-coloured atoms are exactly atoms x such that
s(x) = 1, and that, for i = 2, . . . , k − 2, s(ui) = s(u1), and s(vi) = s(v1) (and
consequently, similar conditions hold for ci , (u ∨ ui)⊥, and (v ∨ vi)⊥). By using
the above symmetries of Lk (and other symmetries obtained by composition), it is
easy to see that these two states are sufficient to show that there exists a two-valued
state s on Lk such that s(c) = s(d) = 1. �
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Fig. 3.

Lemma 5.4. Every OML Lk , k ≥ 3, admits a strong set of real-valued states.

Proof. Let x, y be any elements of Lk such that x �≤ y. It is easy to see that if
(x, y) �= (u, v⊥) and (x, y) �= (v, u⊥) there exists two atoms c, d such that c ≤ x,
d ≤ y⊥, c �⊥ d, (c, d) �= (u, v) and (c, d) �= (v, u). By Lemma 5.3, there exists a
two-valued state s on Lk such that s(c) = s(d) = 1, hence s(x) = 1 and s(y) = 0.

Let us suppose that x = u and y = v⊥, and let s be the real-valued state on
Lk such that (cf. Fig. 3) s(u) = 1, s(c1) = · · · = s(ck) = 1

k
, s(v1) = · · · = s(vk) =

1 − 1
k
, and s(v) = 1

k
. Then s(u) = 1, and s(v⊥) = 1 − 1

k
〈1. The case where x = v

and y = u⊥ is similar. �

Fig. 4.
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Theorem 5.5. Each equation En, n ≥ 3, is not a consequence of the set of
equations ER related to strong sets of real-valued states. In particular, ER is a
proper subset of ERH .

Proof. We need only use Theorem 5.2 and Lemma 5.4, by which, for any n ≥ 3,
Ln admits a strong set of real-valued states, whereas equation En fails in Ln. �

Lemma 5.6. Let n be an integer ≥ 3. If a1, . . . an, b1, . . . bn are any elements
of any OML satisfying (�), and if s is any real-valued state on L such that
s((a1 ∨ b1) ∧ · · · ∧ (an ∨ bn)) = 1, then s((b1 ∨ · · · ∨ bn)⊥) ≤ 1

n
.

Proof. Since s(a1) + · · · + s(an) ≤ 1, there exists i ∈ {1, . . . , n} such that
s(ai) ≤ 1

n
. From s(ai ∨ bi) = 1, and ai ⊥ bi , it follows that s(bi) ≥ 1 − 1

n
, hence,

since (b1 ∨ · · · ∨ bn)⊥ ⊥ bi , we have s((b1 ∨ · · · ∨ bn)⊥) ≤ 1
n

. �

Definition 5.7. Two blocks B,B ′ of an OML are called adjacent if B �= B ′ and
B ∩ B ′ �= {0, 1}. We will say that an OML L is plain if any block of L possesses
at least 3 atoms, and, for any two ajacent blocks B,B ′, their intersection B ∩ B ′

is of the form {0, 1, g, g⊥}, where g is an atom of L. It follows from the Loop
Lemma (cf. Greechie, 1971; Kalmbach, 1983, that every loop in a plain OML is
of order at least 5.

Let us observe that for any n ≥ 3, Ln is a plain OML. The following Lemma
5.8 will be useful in the sequel.

Lemma 5.8. Let L be a plain OML, let a1, . . . , an, b1, . . . , bn (where n ≥ 2) be
elements of L and let us define a, q and b as in Theorem 4.1. Let us assume that
(�) holds and that q ≤ b fails in L. Then q is an atom of L, b is a coatom, and
for i = 1, . . . , n there exists three distinct blocks Bi, B

′
i , B

′′
i such that:

(a) the blocks Bi are pairwise distinct and nonadjacent and, for i = 1, . . . , n,
the set of atoms of Bi is {ai, bi, (ai ∨ bi)⊥},

(b) for i = 1, . . . , n, bi ∈ B ′
i and (ai ∨ bi)⊥ ∈ B ′′

i ,
(c) for i �= j , b⊥ is the unique atom in B ′

i ∩ B ′
j , and q is the unique atom in

B ′′
i ∩ B ′′

j .

Moreover, there exist no real-valued state s on L such that s(q) = s(b⊥) = 1.

Proof. In this proof, we will often use some (quite obvious) properties of plain
OMLs which do not hold in all OMLs.

By (�), we have b1 ⊥ a1 ⊥ a2 ⊥ b2 and, if we define q0 = (a1 ∨ b1) ∧ (a2 ∨
b2), b0 = b1 ∨ b2, then, since q �≤ b, we have q0 �≤ b0, hence q0 �= 0 and b0 �= 1.
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Both a1 and a2 are nonzero since, if for instance a1 = 0, then q0 = b1 ∧ (a2 ∨
b2) ≤ b1 ≤ b0, a contradiction.

Both b1 and b2 are nonzero since, if for instance, b1 = 0, then q0 = a1 ∧
(a2 ∨ b2) hence, by distributivity, q0 = a1 ∧ b2 ≤ b0, a contradiction.

We have a1 ∨ b1 �= 1, since otherwise we would have b1 = a⊥
1 , hence a2 ≤

b1, and q0 ≤ a2 ∨ b2 ≤ b1 ∨ b2 = b0. In the same way, a2 ∨ b2 �= 1.
If s is a real-valued state on a subOML of L containing {a1, a2, b1, b2} such

that s(q0) = 1, then, since s(a1) + s(b1) = s(a2) + s(b2) = 1 and s(a1) + s(a2) ≤
1, it follows that s(b1) ≥ 1

2 or s(b2) ≥ 1
2 , hence s(b0) ≥ 1

2 . Since q0 �≤ b0, this
implies that any sub-OML of L containing a1, a2, b1, b2 does not admit a strong
set of two-valued states.

We observe that there exist three blocks B0, B1, B2 of L such that {a1, a2} ⊆
B0, {a1, b1} ⊆ B1, {a2, b2} ⊆ B2. If a subset M of L is either a block, or the union
of two adjacent blocks, it is easily seen that M is a sub-OML ofL admitting a strong
set of two-valued states. It follows, by the above remark about two-valued states,
that b1 �∈ B0 ∪ B2 and b2 �∈ B0 ∪ B1, hence in particular the blocks B0, B1, B2 are
distinct. Since a1 ∈ (B0 ∩ B1) \ {0, 1}, a1 is an atom or a coatom, and the same is
true for a2. If a1 would be a coatom, since a1 ⊥ b1 and b1 �= 0, this would imply
a1 ∨ b1 = 1, which is not possible. This proves that both a1, a2 are atoms, that a1

is the unique atom in B0 ∩ B1, and a2 is the unique atom in B0 ∩ B2. It follows
that B0 ∩ B1 ∩ B2 = {0, 1}, and therefore that B1 ∩ B2 = {0, 1} since otherwise,
(B0, B1, B2) would be a loop of order three.

Let us suppose that b1 commutes with b2. Then there exists a block B

containing {b1, b2}, and, since b1 �∈ B0 ∪ B2 and b2 �∈ B0 ∪ B1, B is distinct from
B0, B1, B2. It follows that B ∩ B1 = {b1, b

⊥
1 }. Since a1 ∨ b1 �= 1, b1 is not a

coatom, hence it is the unique atom in B ∩ B1, and we infer that B ∩ B1 ∩ B0 =
{0, 1}. If B ∩ B0 �= {0, 1}, B and B0 are adjacent, and then (B,B1, B0) is a loop
of order three. If B ∩ B0 = {0, 1}, then (B0, B1, B, B2) is a loop of order four. In
both cases we obtain a contradiction and therefore b1 does not commute with b2

Let B ′
1 and B ′

2 be two blocks containing {b0, b1} and {b0, b2}), respectively.
Since b1 does not commute with b2, B ′

1 �= B ′
2. Since B1 ∩ B2 = {0, 1}, we cannot

have B1 = B ′
1 together with B2 = B ′

2. If B2 = B ′
2, we show as above that if

B ′
1 ∩ B0 �= {0, 1}, (B ′

1, B1, B0) is a loop of order 3, and otherwise (B0, B1, B
′
1, B2)

is a loop of order 4. This shows that B ′
1 �= B1 and B ′

2 �= B2. It follows that B1, B
′
1

are adjacent, B2, B
′
2 too, therefore both b1 and b2 are atoms or coatoms. Since

b0 = b1 ∨ b2 �= 1, and b1 does not commute with b2, both b1 and b2 are atoms.
Since b0 ∈ B ′

1 ∩ B ′
2, and b1, b2 are two distinct atoms ≤ b0, it follows that b0 is a

coatom, and that b⊥
0 is the unique atom in B ′

1 ∩ B ′
2.

Since b0 ≤ b〈1, and b0 is a coatom, it follows that b = b0.
Now, replacing b1 by (a1 ∨ b1)⊥, b2 by (a2 ∨ b2)⊥, q0 by b⊥

0 , and b0 by q⊥
0 , we

obtain exactly in the same way that there exists two distinct blocks B ′′
1 , B ′′

2 such
that (a1 ∨ b1)⊥ is the unique atom in B1 ∩ B ′′

1 , (a2 ∨ b2)⊥ is the unique atom in
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B2 ∩ B ′′
2 , q = q0 is the unique atom in B ′′

1 ∩ B ′′
2 . This shows in particular that, for

i = 1, 2, Bi possesses exactly three atoms: ai, bi and (ai ∨ bi)⊥.
To complete the proof of a), b), c) in Lemma 5.8, we need only notice that

in the above proofs, we can replace the couple (1, 2) by any couple (i, j ), with
i, j ∈ {1, . . . , n}, and i �= j .

If s1 is a real-valued state on L such that s1(q) = 1, then, by the above remark
about real-valued states s on sub-OML of L containing {a1, a2, b1, b2} such that
s(q0) = 1, we have s1(b) = s1(b0) ≥ 1

2 , hence s1(b)⊥ �= 1. �

Lemma 5.9. For any n ≥ 3 and k ≥ 3, equation En holds in Lk iff n �= k.

Proof. Let k and n be two integers ≥ 3, and let a1, . . . an, b1, . . . , bn ∈ Lk ,
satisfying (�). We define a, b, q as in Theorem 4.1. The elements of Lk will
be denoted here as indicated in Fig. 3. If k〈n, there exists i0 ∈ {1, . . . , n} such
that ai0 = 0, and then a ∧ q ≤ ai0 ∨ bi0 = bi0 ≤ b. If k = n, we already know, by
Theorem 4.1, that En fails in Lk .

Let us assume that k〉n, and suppose that q ∧ a �≤ b. Then, by Lemma 5.8, q

and b⊥ are two atoms of Lk and there exists no real-valued state s on Lk such that
s(q) = s(b⊥) = 1. Therefore, by Lemma 5.3 and the symmetry σ of Lk , we need
only study the case where q = u and b = v⊥.

It follows from Lemma 5.8 that, for i = 1, . . . , n, there exists p ∈ {1, . . . , k}
such that bi = vp, ai = cp and (ai ∨ bi)⊥ = up. The atoms ai , i = 1, . . . , n, be-
ing nonzero and mutually orthogonal, they are distinct, and, by the symmetries
σi,j of Lk (cf. the proof of Lemma 5.3), we may assume that, for i = 1, . . . , n,
ai = ci and bi = vi . Then a = a1 ∨ · · · ∨ an ≤ c⊥

k , hence a ∧ q ≤ c⊥
k ∧ u = 0, a

contradiction. �

Theorem 5.10. For n ≥ 3, En is not a consequence (in the theory of OMLs) of
the set of equations {Ek : k ≥ 3, k �= n}. This still holds in the theory of OMLs
satisfying all the equations in ER .

Proof. The first part is an obvious consequence of Lemma 5.9. The second part
follows from the fact that, by Lemma 5.4, for k ≥ 3, Lk admits a strong set of
real-valued states, which implies that any equation in ER holds in Lk . �

Remark: For each n ≥ 3 there are some variants of equation En. In each of the
following equations, �, a, b and q are defined as above in Theorem 4.1.
By exchanging the roles of bi and (ai ∨ bi)⊥, for i = 1, . . . , n, we obtain:

(�) ⇒ a ∧ b⊥ ≤ q⊥
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which can also be written:

(�) ⇒ q ≤ a⊥ ∨ b

If, in En+1, we replace an+1 by a⊥ = (a1 ∨ · · · ∨ an)⊥, and bn+1 by a ∧ b, we
obtain:

(�) ⇒ q ∧ (a → b) ≤ b.

Substituting, in (En+1), a⊥ to an+1 and ϕa(q) to bn+1 (where ϕa is the Sasaki
projection: ϕa(q) = (q ∨ a⊥) ∧ a), we obtain:

(�) ⇒ q ≤ b ∨ ϕa(q).

We observe that, in both two last cases, the equation obtained is a consequence
of En+1, which fails in Ln+1, hence is nontrivial.

6. ANOTHER SEQUENCE OF EQUATIONS

Let n ≥ 2 be an integer, and let L′
n be the OML whose Greechie diagram is

represented in Fig. 5.
Then L′

n does not admit a strong set of RH-states. Indeed, let us assume that
s is a RH-state on this OML such that s(u) = s(1) = e1, (where ||e1|| = 1). Then,
for i = 1, . . . , n, s(ai) ⊥ s(bi) and s(ai) + s(bi) = e1, hence, since s(v) ⊥ s(bi),

||s(v)||2 = 〈s(v), e1〉 = 〈s(v, s(ai) + s(bi)〉 = 〈s(v), s(ai)〉.

Fig. 5.
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Fig. 6.

Moreover, since a1, . . . , an, r are mutually orthogonal and a1 ∨ · · · ∨ an ∨ r = 1,
s(a1) + · · · + s(an) + s(r) = e1, hence

||s(v)||2 = 〈s(v), s(a1) + · · · + s(an) + s(r)〉 = n||s(v)||2 + 〈s(v), s(r)〉
and it follows that 〈s(v), s(r)〉 = (1 − n)||s(b⊥)||2.

From u ≤ v ∨ c, it follows that s(v) + s(c) = e1, hence, since r ⊥ c,

〈s(v), s(r)〉 = 〈s(v) + s(c), s(r)〉 = 〈e1, s(r)〉 = ||s(r)||2.
Therefore, we obtain ||s(r)||2 + (n − 1)||s(v)||2 = 0, and, since each term in this
sum is a positive real number, it follows that s(r) = s(v) = 0, and s(v⊥) = e1.
Since, u �≤ v⊥, this proves that L′

n does not admit a strong set of RH-states. We
have also s(c) = s(v⊥ ∧ r⊥) = e1, whereas u �≤ c. We use the same procedure
as in Theorem 5.2 for obtaining an equation in ERH which fails in L′

n. The
hypotheses needed in the above proof are represented in the diagram of Fig. 6.
The corresponding equation can be written, after some modifications: ((�) and
r ⊥ a) ⇒ q ∧ (b → r⊥) ∧ (a ∨ r) ≤ b, where a, b, q and (�) are defined as in
Theorem 4.1. It is easy to verify directly that this equation holds in any OML with
a strong set of RH-states and fails in L′

n.
Moreover, let us notice that, if we set r = 0, we obtain equation En, which

proves that E′
n is stronger than En.

Theorem 6.1. Let n ≥ 2 be an integer, let a1, . . . , an, b1, . . . , bn, r be 2n + 1
variables, and let (�), a, b, q be defined as above in Theorem 4.1. Then the
following equation E′

n:

((�) and r ⊥ a) ⇒ q ∧ (b → r⊥) ∧ (a ∨ r) ≤ b (E′
n)
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Fig. 7.

holds in any OML with a strong set of RH-states, and fails in the OML L′
n of Fig.

5. Equation E′
n is stronger than En, hence in particular E′

n belongs to ERH \ ER .

We notice that, if we replace on the right-hand side of the inequality, b by
b ∧ r⊥, we obtain an equation which is equivalent, since the identity b ∧ r⊥ =
b ∧ (b → r⊥) holds in any OML.
Substituting a⊥ to r in E′

n , and using the identity (b → a) ∧ b = a ∧ b, we obtain:

(�) ⇒ q ∧ (b → a) ≤ a ∧ b.

This equation is nontrivial since it does not hold in L′
n or in Ln.

Lemma 6.2. Let k be an integer ≥ 2. For any two atoms g1, g2 in L′
k such that

g1 �⊥ g2, {g1, g2} �= {u, d}, {u, e}, {u, v}, (cf. Fig. 5) there exists a two-valued state
s on L′

k such that s(g1) = s(g2) = 1. But there is no real-valued state on L′
k such

that s(u) = 1 together with s(d) = 1 or s(e) = 1 or s(v) = 1.

Proof. For any pair (i, j ) of elements of {1, . . . , k} such that i �= j , there exists
a unique symmetry (i.e., an involutive automorphism) of L′

k such that s(ui) = uj

and s(ul) = ul for any l �= i, j .
The two-valued states on L′

k represented in Fig. 8a, 8b, and 8c, (where it
must be understood, in each case, that the black-coloured atoms are exactly atoms
x such that sm(x) = 1 and that, for i = 2, . . . , k − 2, we have sm(ui) = sm(u1),
and sm(vi) = sm(v1)) are sufficient to obtain, modulo the above symmetries, all
the needed two-valued states.
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Fig. 8.

Let s be a real-valued state on L′
k such that s(u) = 1

If s(v) = 1, then, for i = 1, . . . , k, s(ui) = s(vi) = 0, hence s(ci) = 1, which
contradicts the fact that s(c1) + · · · + s(ck) = 1 (with k ≥ 2).
If s(d) = 1 or s(e) = 1, then s(f ) = 0, hence, since s(h) = 0, it follows that
s(v) = 1, which is not possible. �

Lemma 6.3. Let n, k be two integer ≥ 2. Then E′
n holds in L′

k iff n �= k.

Proof. In this proof, the elements of L′
k are denoted as shown in Fig. 7. We

already know that if k = n, E′
n fails in L′

k . Let us suppose that k �= n and that E′
n

fails in L′
k . Let a1, . . . , an, b1, . . . , bn, r be 2n + 1 elements in L′

k satisfying the
relations (�) and a ⊥ r , and such that q ∧ (b → r⊥) ∧ (a ∨ r) �≤ b, where a, b, q

are defined as above.
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By Lemma 5.8, both q and b⊥ are atoms of L′
k and this OML admits no

real-valued state s such that s(q) = s(b⊥) = 1. By Lemma 6.2, we obtain that
{q, b⊥} is one of the three sets: {u, v}, {u, d}, {u, e}. Moreover, let us observe that,
by the part (c) of Lemma 5.8, b⊥ belongs to n distinct blocks at least. In the same
way, q belongs to n different blocks. It follows that it is not possible that b⊥ = e

or q = e, and it follows that {q, b⊥} = {u, v} or {q, b⊥} = {u, d}.
a) Let us suppose first that q = d, b⊥ = u.

Then, since d belongs only to two different blocks, by the remark above,
n = 2. By Lemma 5.8, and the relations of orthogonality q ⊥ (a1 ∨ b1)⊥ ⊥ a1 ⊥
b1 ⊥ b⊥ ⊥ b2 ⊥ a2 ⊥ (a2 ∨ b2)⊥ ⊥ q, and a1 ⊥ a2, it follows that we may sup-
pose (using the fact that a1, a2 play symmetrical roles, and c1, . . . ck too) that
q, (a1 ∨ b1)⊥, a1, b1, b

⊥, b2, a2, (a2 ∨ b2)⊥ are equal to d, c1, v1, u1, u, h, v, f ,
respectively. Indeed, under these conditions, we have a1 = v1 ⊥ v = a2. From
the assumption r ⊥ a, we obtain that r ≤ (a1 ∨ a2)⊥ = (v1 ∨ v)⊥. If r = 0, then
q ∧ (a ∨ r) = d ∧ (v1 ∨ v) = 0, a contradiction. Otherwise we have r = (v1 ∨
v)⊥ hence q ∧ (b → r⊥) = d ∧ (u ∨ (u⊥ ∧ (v ∨ v1))) = d ∧ u = 0, another con-
tradiction.

b) Let us assume that q = u, b⊥ = d.
In the same way as in a), we show that n = 2, and we may suppose that q,
(a1 ∨ b1)⊥, a1, b1, b⊥, b2, a2, (a2 ∨ b2)⊥ are equal to u, h, v, f, d, , c1, v1, u1,
respectively, and then r ≤ (v ∨ v1)⊥. It is easily seen that, if r = 0, q ∧ (a ∨ r) =
0, and, if r = (v ∨ v1)⊥, q ∧ (b → r⊥) = 0, hence in both cases, we obtain a
contradiction.

c) Now, let us study the case q = u, b⊥ = v.
By Lemma 5.8, for i = 1, . . . , n, there exists a block Bi with 3 atoms ai , bi , (ai ∨
bi)⊥, such that bi ⊥ b⊥ and (ai ∨ bi)⊥ ⊥ q. It follows easily that, for i = 1, . . . , n,
there exists j ∈ {1, . . . , k} such that ai = cj . Since a1, . . . , an are distinct, this
implies that n〈k, and we may assume, without any loss of generality that, for
i = 1 · · · , n, ai = ci . If r �= a⊥, then a ∨ r〈1 and q ∧ (a ∨ r) = 0, a contradiction.
Otherwise, r = a⊥, and, since n〈k, we have v⊥ ∧ a = 0, hence q ∧ (b → r⊥) =
u ∧ (v⊥ → a) = u ∧ v = 0, another contradiction.

d) It remains to study the case q = v, b⊥ = u.
In the same way as in the case c), we show that n〈k and we may suppose that
ai = ci for i = 1, . . . , n. Then, if a ∨ r �= 1, then q ∧ (a ∨ r) = 0, a contradiction.
Otherwise, r = a⊥, thus b → r⊥ = u⊥ → a = u, hence q ∧ (b → r⊥) = 0, a
contradiction.
This completes the proof of Lemma 6.3. �

Theorem 6.4. For each n ≥ 2, the equation E′
n is not a consequence of E0,

and it is not a consequence of ER ∪ {E′
k : k ≥ 2 and k �= n} ∪ {Ek : k ≥ 3}. In

particular, for n ≥ 3, E′
n is strictly stronger than En.
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Proof. Since E′
n is stronger than En, it follows, by Theorem 4.2 that E′

n is not a
consequence of E0.

For j = 1, 2, 3, there is a unique real-valued state sj on L′
n satisfying the

following conditions, where the atoms of L′
n are denoted as in Fig. 7, with k = n:

s1(u) = 1, s1(v) = 2
2n+1 , s1(d) = s1(e) = 1

2n+1 , s1(f ) = 1 − 2
2n+1 and, for i =

1, . . . , n, s1(ci) = 2
2n+1 and s1(vi) = 1 − 2

2n+1 ;
s2(e) = s2(v) = 1, s2(u) = 1

n
and, for i =1, . . . , n, s2(ci) = 1

n
and s2(ui) = 1 − 1

n
;

s3(d) = 1, s3(u) = s3(v) = s3(h) = 1
2 , and, for i = 1, . . . , n, s3(ui) = s3(vi) = 1

2 .
It is not difficult to see, by using Lemma 6.2, and the states s1, s2, s3, that for any
n ≥ 3, L′

n admits a strong set of real-valued states, and it follows that any equation
in ER holds in L′

n.
For any k �= n, by Lemma 6.3, E′

k holds in L′
n, hence Ek too, whereas E′

n

fails in L′
n. To complete the proof of Theorem 6.4 we need only show that, for

any n ≥ 3, En holds in L′
n. In the same way as in the proof of Lemma 6.3, we

prove that, if a1, . . . an, b1, . . . , bn are elements of L′
n satisfying (�), such that

a ∧ q �≤ b (where a, b, q are defined as above), then we have (cf. Fig. 7, with
k = n) either (q, b) = (u, v⊥) or (q, b) = (v, u⊥) and that in both cases, by the
symmetries of L′

n, we may suppose that, for i = 1 · · · , n, ai = ci . In both cases,
we have a ∧ q = 0, a contradiction. �

7. SOME OTHER EQUATIONS

In this section, we give many other sequences of equations holding in Hilbert
lattices, for which, in some cases, we have not carried out the complete study of
the independence relatively to other equations.

Theorem 7.1. Let H be an orthomodular space over K , and let
a1, . . . an, b1, . . . bn ∈ C(H). Let (�), a, b, q be defined as in Theorem 4.1. Then
the equation E′′

n:

(�) ⇒ q ≤ b (E′′
n)

holds in C(H) iff dim(H)〈n or (dim(H) = n and (n − 1)1K �= 0K ).

Proof. Let us suppose that the conditions (�) and a ⊥ r hold true.
If dim(H)〈n, there exists i ∈ {1, . . . , n} such that ai = 0, and it follows that
q ≤ bi ≤ b.
Let us assume that dim(H) = n and (n − 1)1K �= 0K . If there exists i ∈ {1, . . . , n}
such that ai = 0, it follows as above that q ≤ b holds true. Otherwise, since
dim(ai) ≥ 1 for i = 1, . . . , n, it follows that a = H, hence, since En holds in
C(H), we have q = a ∧ q ≤ b.
Now, let us suppose that dim(H) = n and (n − 1)1K = OK . Let us define
a1, . . . , an, b1, . . . , bn as in the part b) of the proof just before Theorem 4.1. Then
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a = H, hence q = a ∧ q. Since equation En fails in C(H), it follows that E′′
n also

fails. The last case to study is when dim(H)〉n. In this case, let u1, . . . , un+1 ∈ H
be n + 1 pairwise orthogonal vectors. Let us suppose that, for i = 1, . . . , n, ai and
bi are generated by ui and by vi = �j �=iuj , respectively. We define v = �n+1

i=1 ui .
Then v ∈ q and v �∈ b. Indeed, let us suppose that there exist λ1, . . . , λn ∈ K

such that v = λ1v1 + · · · + λnvn, and let us define λ = λ1 + · · · + λn. Then
v = (λ − λ1)u1 + · · · + (λ − λn)un + λun+1, and it follows that λ = 1, and λ1 =
· · · = λn = 0, a contradiction. This proves that E′′

n fails in C(H). �

Theorem 7.2. Let H be an orthomodular space over K , and let
a1, . . . an, b1, . . . bn, r ∈ C(H). Let (�), a, b, q be defined as in Theorem 4.1.
Then the equation E∗

n:

((�) and r ⊥ a) ⇒ (a ∨ r) ∧ q ≤ b ∨ r (E∗
n)

holds in C(H) iff dim(H)〈n or (dim(H) ≥ n and (n − 1)1K �= 0K ). For any n ≥ 3,
En is a consequence of E∗

n . It follows that E∗
n ∈ E and E∗

n is not a consequence of
E0, and is not a consequence of ER ∪ {Ek : k ≥ 3, k �= n}.

Proof. If dim(H)〈n, then E′′
n holds in C(H), hence E∗

n too.
Let us assume that dim(H) ≥ n and (n − 1)1K �= 0K , and let x ∈ (a ∨ r) ∧ q.
Then, if we define z = pr (x), and, for i = 1, . . . , n, xi = pai

(x),
yi = pbi

(x), we have x = x1 + · · · + xn + r = x1 + y1 = · · · = xn + yn, hence
(n − 1)x = y1 + · · · + yn − z ∈ b ∨ r . This proves that, if (n − 1)1K �= 0K ,
x ∈ b ∨ r hence E∗

n holds true.
By setting r = 0 in the equation E∗

n , we obtain equation En, and it is easy to
complete the proof. �

Remarks:

a) It is easy to prove that, for n ≥ 3, E∗
n ∈ ERH .

b) It is not known to us whether or not E∗
n and En are equivalent.

c) The equation E∗
n may be written for n = 2. We have shown in Section 4

that equation E2 is trivial, but we do not know whether or not the same is
true for E∗

2 . This equation, which holds in any GHL, is very simple:

a1 ⊥ b1, a2 ⊥ b2, r ⊥ a1 ⊥ a2 ⊥ r ⇒ (a1 ∨ b1) ∧ (a2 ∨ b2)

∧(a1 ∨ a2 ∨ r) ≤ b1 ∨ b2 ∨ r (E∗
2 )

A simple consequence of equation E∗
2 is:

a1 ⊥ b1, a2 ⊥ b2, a1 ⊥ a2 ⇒ (a1 ∨ b1) ∧ (a2 ∨ b2) ≤ b1 ∨ b2 ∨ (a1 ∨ a2)⊥

and we do not know if there exists an OML in which this equation fails.
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Theorem 7.3. Let n1 and n2 be two integers such that n1〉n2 ≥ 2. For k = 1, 2
and 1 ≤ i ≤ nk , let ak

i , b
k
i be variables, and let us define ak = ak

1 ∨ · · · ∨ ak
nk

, bk =
bk

1 ∨ · · · ∨ bk
nk

and qk = (ak
1 ∨ bk

1) ∧ · · · ∧ (ak
nk

∨ bk
nk

). Let r be another variable.
For k = 1, 2, let us denote by (�k) the set of conditions of orthogonality: for
i = 1, . . . , nk , ak

i ⊥ bk
i , and for i, j ∈ {1, . . . , nk}, i �= j , ak

i ⊥ ak
j . Let us denote

by E(n1,n2) the following equation:

((�1), (�2), r ⊥ a1, r ⊥ a2) ⇒ (a1 ∨ r) ∧ (a2 ∨ r) ∧ q1 ∧ q2 ≤ b1 ∨ b2 (En1,n2 )

Equation En1,n2 holds in any GHL whose underlying division ring K satisfies
the condition (n1 − n2).1K �= 0K . In particular, it holds in every classical Hilbert
lattice.

Moreover, this equation belongs to ERH and is not a consequence of ER ∪
{E′

n : n ≥ 2} ∪ {E∗
n : n ≥ 2} ∪ {En′

1,n
′
2
: n′

1〉n′
2 ≥ 2 and (n′

1, n
′
2) �= (n1, n2)}.

Proof. Let us suppose that r , ak
i , b

k
i (for k = 1, 2, i = 1, . . . , nk) are elements of a

GHLL such that the above conditions of orthogonality hold inL, and let x ∈ (a1 ∨
r) ∧ (a2 ∨ r) ∧ q1 ∧ q2. Let z = prr (x). For k = 1, 2 and 1 ≤ i ≤ nk , let us define
xk

i = prak
i
(x) and yk

i = prbk
i
(x). In the same way as in the proof of Theorem 7.2,

we obtain, for k = 1, 2, (nk − 1)x = yk
1 + · · · + yk

nk
− z. By substraction, we have

(n1 − n2)x = y1
1 + · · · + y1

n1
− y2

1 − · · · − y2
n2

. It follows that, if (n1 − n2)1K �=
0K , x ∈ b1 ∨ b2.

Now, let us suppose that L′ is an OML with a strong set of RH-valued states,
and let us prove that En1,n2 holds in L′. Let ak

i , b
k
i (for k = 1, 2, i = 1, . . . , nk),

and r be elements of L′ satisfying the above conditions of orthogonality, and let s

be a RH-state on L′ such that s((a1 ∨ r) ∧ (a2 ∨ r) ∧ q1 ∧ q2) = e1, with ||e1|| =
1. Then it is easy to see that (n1 − n2)e1 = s(b1

1) + · · · + s(b1
n1

) − s(b2
1) − · · · −

s(b2
n2

). Since (b1 ∨ b2)⊥ is orthogonal to b1
1, . . . , b

1
n1

, b2
1, . . . , b

2
n2

, it follows that
s((b1 ∨ b2)⊥) ⊥ e1, hence s((b1 ∨ b2)⊥) = 0 and s(b1 ∨ b2) = e1. SinceL′ admits
a strong set of RH-valued states, this shows that (a1 ∨ r) ∧ (a2 ∨ r) ∧ q1 ∧ q2 ≤
b1 ∨ b2.

Let us denote byLn1,n2 the OML given in Fig. 9. It is easy to verify, by the same
calculations as above, that, for any RH-state s onLn1,n2 such that s(u) = s(1) = e1,
we have s(v⊥) = e1. This proves that Ln1,n2 does not admit a strong set of RH-
states. It is not difficult to see that, if we apply Theorem 5.1, we obtain equation
En1,n2 .

Let us denote by σ the symmetry of Ln1,n2 such that σ (u) = v and σ (ck
i ) = ck

i

for k = 1, 2 and 1 ≤ i ≤ nk . For k = 1, 2, and 1 ≤ i〈j ≤ nk , let σ(k,i,j ) be the
symmetry of Ln1,n2 such that σ(k,i,j )(ck

i ) = ck
j , σ(k,i,j )(u) = u, σ(k,i,j )(v) = v, and

σ(k,i,j )(ck′
i ′ ) = ck′

i ′ for (k′, i ′) �= (k, i), (k, j ). The 10(a) and 10(b) represent two-
valued states on Ln1,n2 , with the same understanding as above in Figures 4, 8(a),
8(b), 8(c). These four states are sufficient to see, by using the above symmetries
σ and σ(k,i,j ), that for any two atoms f, g of Ln1,n2 such that f �⊥ g and {f, g} �=
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Fig. 9.

{u, v}, there exists a two-valued state s on Ln1,n2 such that s(f ) = s(g) = 1. It
follows that if d, e are any two elements of Ln1,n2 such that d �≤ e, (d, e) �= (u, v⊥)
and (d, e) �= (v, u⊥), there exists a two-valued state s on Ln1,n2 such that s(d) = 1
and s(e) = 0.

Moreover, if s is any real-valued state on Ln1,n2 such that s(u) = 1, since
s(c1

1) + · · · + s(c1
n1

) ≤ 1, and n1 ≥ 3, there exists i such that s(c1
i ) ≤ 1

3 , and it
follows that s(v1

i ) ≥ 2
3 , hence s(v) ≤ 1

3 .

Fig. 10.



Equations Holding in Hilbert Lattices 1283

It is easy to see that there is a unique real-valued state s on Ln1,n2 such
that s(u) = 1, for i = 1, . . . , n1, s(c1

i ) = 1
n1

, for j = 1, . . . , n2, s(c2
j ) = 1

n2
and

s(v) = 1
n1

, hence s(v⊥) = 1 − 1
n1

. This proves (by the symmetry σ ) that Ln1,n2

admits a strong set of real-valued states.
Let n ≥ 2 be an integer, and let us suppose that E′

n fails in Ln1,n2 .
Let a1, . . . , an, b1, . . . , bn, r be elements of Ln1,n2 satisfying conditions (�)

and r ⊥ a, and such that q ∧ (b → r⊥) ∧ (a ∨ r) �≤ b, where a, b, q and (�) are
defined as in Theorem 4.1. Then, by Lemma 5.8, for i = 1, . . . , n, ai, bi and (ai ∨
bi)⊥ are atoms ofLn1,n2 . Moreover, by considering real-valued states, we have nec-
essarily (q, b) = (u, v⊥) or (q, b) = (v, u⊥), and, by the symmetry σ , we may (and
do) assume that (q, b) = (u, v⊥). For i = 1, . . . , n, since ai, bi, (ai ∨ bi)⊥ all be-
long to a same block, and by the relations bi ≤ b and q ≤ (ai ∨ bi)⊥, it follows that
there exists k ∈ {1, 2} and j , with 1 ≤ j ≤ nk , such that ai = ck

j and bi = vk
j (cf.

Fig. 9). Since a1, . . . , an are atoms pairwise orthogonal, k does not depend on i and
necessarily we have n ≤ nk . We will assume, for instance, that k = 1, and, by the
symmetries σ1,i,j , we may (and do) suppose that for i = 1, . . . , n, ai = c1

i and bi =
v1

i . If a ∨ r〈1, since a ∨ r belongs to the block B whose atoms are c1
1, . . . , c

1
n1

, c, it
follows that q ∧ (a ∨ r) = 0, a contradiction. Otherwise, r = a⊥, thus, since a ∈
B and a �= 1, we have b ∧ r⊥ = b ∧ a = 0 hence b → r⊥ = b⊥ and q ∧ (b →
r⊥) = 0, another contradiction. This show that, for n ≥ 2, E′

n holds in Ln1,n2 .
Let n ≥ 2, and let us assume that E∗

n fails in Ln1,n2 . Let
a1, . . . ,an, b1, . . . , bn, r be elements of Ln1,n2 satisfying conditions (�) and
r ⊥ a, such that (a ∨ r) ∧ q �≤ b ∨ r , where (�), a, b, q are defined as in Theorem
7.2. Since q �≤ b, we may apply Lemma 5.8, and, in the same way as above, we
may suppose, without any loss of generality, that q = u, b = v⊥, n ≤ n1, and for
i = 1, . . . , n, ai = c1

i and bi = v1
i . If a ∨ r〈1, then (a ∨ r) ∧ q = 0, a contradic-

tion. If a ∨ r = 1 then, since c ≤ r , we have b ∨ r = 1, another contradiction.
Let (n′

1, n
′
2) such that n′

1〉n′
2 ≥ 2 and (n′

1, n
′
2) �= (n1, n2), and let us prove

that En′
1,n

′
2

holds in Ln1,n2 . Let us suppose that this equation fails in Ln1,n2 , and let
ak

1, . . . , a
k
n′

k
, bk, . . . , bk

n′
k
, k = 1, 2, and r be elements ofLn1,n2 satisfying conditions

(�1), (�2), r ⊥ a1, r ⊥ a2, and such that (a1 ∨ r) ∧ (a2 ∨ r) ∧ q1 ∧ q2 �≤ b1 ∨ b2

(where it is assumed that, in these conditions, n1, n2 are replaced by n′
1, n

′
2,

respectively). Since (�1) holds and q1 ≤ b fails in Ln1,n2 , by Lemma 5.8, and
by the above result about real-valued states on Ln1,n2 , it follows that (q1, b1) is
either (u, v⊥), or (v, u⊥) (see Fig. 9) and the same is true for (q2, b2). We cannot
have, for instance, q1 = u and q2 = v since then q1 ∧ q2 = 0, a contradiction.
Therefore, by the symmetry σ of Ln1,n2 , we may assume that q1 = q2 = u and
b1 = b2 = v⊥.

By Lemma 5.8, there exists k1 ∈ {1, 2} such that for i = 1, . . . , n′
1 there exists

i ′ = f1(i) ∈ {1, . . . , nk1} such that a1
i = c

k1
i ′ . In the same way, there exists k2 ∈

{1, 2} such that each element a2
i is of the form c

k2
i ′ , where i ′ = f2(i) ∈ {1, . . . , nk2}.
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Since the mappings f1 and f2 are injective, it follows that n′
1 ≤ nk1 and n′

2 ≤ nk2 .
Moreover, since r ⊥ a1 and r ⊥ a2, it follows that r ≤ c.

If n′
1〈nk1 , there exists an integer i ′ ∈ {1, . . . , nk1} which is not of the form

f1(i). Then a1 ∨ r ≤ (ck1
i ′ )⊥, thus (a1 ∨ r) ∧ q1 = 0, a contradiction. Therefore,

n′
1 = nk1 , and, in the same way, we show that n′

2 = nk2 . Since n1〉n2 and n′
1〉n′

2,
we obtain (n′

1, n
′
2) = (n1, n2), a contradiction.

Since Ln1,n2 admits a strong set of real-valued states, it satisfies all the equa-
tions in ER . We have shown above that each equation of {E′

n : n ≥ 2} ∪ {E∗
n : n ≥

2} ∪ {En′
1,n

′
2

: n′
1〉n′

2 ≥ 2, (n′
1, n

′
2) �= (n1, n2)} holds in Ln1,n2 . Since En1,n2 fails in

Ln1,n2 , this completes the proof of Theorem 7.3. �

In the following Theorems 7.4 and 7.5 we give other sequences of equations
holding in all HLs (even in most GHL) for which we have not carried out the
complete study.

In these two Theorems, we assume that m is an integer ≥ 2 and that to
each integer k ∈ {1, . . . , m}, are associated an integer nk ≥ 2 and 2nk variables
ak

1, . . . , a
k
nk

, bk
1, . . . b

k
nk

. We define ak = ak
1 ∨ · · · ∨ ak

nk
, bk = bk

1 ∨ · · · ∨ bk
nk

, and
qk = (ak

1 ∨ bk
1) ∧ · · · ∧ (ak

nk
∨ bk

nk
). Moreover, we denote by (�k) the set of con-

ditions of orthogonality: for i = 1, . . . , nk , ak
i ⊥ bk

i , and for i, j ∈ {1, . . . , nk},
i �= j , ak

i ⊥ ak
j . In both cases, we denote by L a GHL and by K its un-

derlying division ring. Other variables will be denoted by rj (where j is an
integer).

It is easy to see, in both cases, that the equations belong to ERH . Each of
them may be obtained by applying Theorem 5.1 to a plain OML in which the
equation fails. This OML is obtained by pasting copies of the OMLs Lnk

(cf. Fig.
1) modified by adding one or two atoms to their main block (the main block of
the OML Ln of Fig. 1 being this one whose atoms are a1, . . . , an), and possibly
by adding some new blocks containing these new atoms. These OMLs will not be
depicted but each of them can easily been constructed, leaving oneself be guided
by the corresponding equation.

Moreover, it is not difficult to obtain results about the independence of the
equations obtained in Theorem 7.4, by using the same methods as in the proof of
Theorem 7.3.

Theorem 7.4. Let us assume that (
m∑

k=1
(−1)knk).1K �= 0K .

If we define a∗ = (a1 ∨ r1) ∧ (r1 ∨ a2 ∨ r2) ∧ · · · ∧ (rm−2 ∨ am−1 ∨ rm−1) ∧
(rm−1 ∨ am), then the following equation holds in L:

(�1), . . . , (�m), a1 ⊥ r1 ⊥ a2 ⊥ r2 ⊥ · · · ⊥ am−1 ⊥ rm−1 ⊥ am

⇒ a∗ ∧ q1 ∧ · · · ∧ qm ≤ b1 ∨ · · · ∨ bm.
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Moreover, if m is an even number, m ≥ 6, and if we define a′∗ = (rm ∨ a1 ∨ r1) ∧
(r1 ∨ a2 ∨ r2) ∧ · · · ∧ (rm−1 ∨ am ∨ rm), the following equation holds in L:

(�1), . . . , (�m), rm ⊥ a1 ⊥ r1 ⊥ a2 ⊥ r2 ⊥ · · · ⊥ am ⊥ rm

⇒ a′∗ ∧ q1 ∧ · · · ∧ qm ≤ b1 ∨ · · · ∨ bm.

Proof. The proof is almost the same as the above proof of Theorem 7.3. We need
only use, instead of the substraction of two equalities, the linear combination of
m equalities, with the coefficients +1 and −1 alternately. �

Theorem 7.5. Let us assume that the integer m (see above, before Theorem 7.4)
is ≥ 3. Let us denote by (�) the set of conditions of orthogonality: {ri ⊥ rj : i, j ∈
{1, . . . , m}, i �= j}. Let us define r∗ = r1 ∨ · · · ∨ rm, and a∗ = (a1 ∨ r1) ∧ · · · ∧
(am ∨ rm). Let us assume that (1 − m + ∑m

k=1 nk)1K �= 0K . Then the following
equation holds in L:

(�), (�1), . . . , (�m), a1 ⊥ r1, . . . , am ⊥ rm ⇒
a∗ ∧ r∗ ∧ q1 ∧ · · · ∧ qm ≤ b1 ∨ · · · ∨ bm.

Proof. Let us assume that ak
i , b

k
i , rk (for k = 1, . . . , m, i = 1, . . . , nk) are el-

ements of L satisfying the above conditions of orthogonality, and let x ∈
a∗ ∧ r∗ ∧ q1 ∧ · · · ∧ qm. Then, for k = 1, . . . , m, we show, in the same way
as in the proof of Theorem 7.2, that (nk − 1)x = yk

1 + · · · + yk
nk

− zk , where
yk

i = prbk
i
(x), and zk = prrk

(x). Since x = ∑m
k=1 zk , it follows, by summation,

that (1 − m + ∑m
k=1 nk)x ∈ b1 ∨ · · · ∨ bm, hence x ∈ b1 ∨ · · · ∨ bm. �

8. CONCLUDING REMARKS

It is not very difficult to obtain other equations in the same way. For instance,
it is possible to give a (quite complicated) general result including all equations
obtained in Theorems 7.2, 7.4 and 7.5, and many other ones. But it seems difficult
to obtain in this way a simple equational basis (if it does exist) of the variety
generated by the class of HLs. From this viewpoint, it would be interesting to
explore new ways allowing to obtain equations holding in HLs. Hereafter, we
show that it is possible to obtain an equation in E \ ER by using the method of the
strong set of real-valued states together with a tensorial product. Unfortunately
the equation obtained belongs to ERH and, more precisely, is a consequence of the
equation E′

2 studied above in Section 6. The starting point of this method is the
example, due to Foulis and Randall, given in Kalmbach (1983), 265, of a finite
OML L such that the tensorial product L ⊗ L does not exist.
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We intend to show that the following equation (where a, b, q, (�) are defined
as in Propositon 6.1, with n=2) belongs to E \ ER:

((�) , r ⊥ a) ⇒ q ∧ (b → r⊥) ∧ (a ∨ r) ≤ r⊥ → b.

Let us suppose that a1, a2, b1, b2, r are elements of a (classical) Hilbert
lattice L, satisfying the conditions (�) and r ⊥ a. Let us prove that the inequal-
ity q ′ ≤ r⊥ → b, where q ′ = q ∧ (b → r⊥) ∧ (a ∨ r), holds in L. Since L is a
Hilbert lattice the tensorial product L∗ = L ⊗ L (in the sense of Foulis-Randall,
cf. Kalmbach, 1983, p. 264) exists. The OML L∗ contains all the elements of the
form u ⊗ v, for any u, v ∈ L, and, by definition, u ⊗ v ⊥ u′ ⊗ v′ iff u ⊥ u′ or
v ⊥ v′. Moreover, for any real-valued state s on L, there exists a real-valued state
s∗ on L∗ such that for any u, v ∈ L, s∗(u ⊗ v) = s(u)s(v).

Let s be a real-valued state on L such that s(q ′) = 1. Let us define α =
s(a1), β = s(a2) and γ = s(b⊥). Then, from s(q) = 1, it follows s(a1 ∨ b1) =
s(a2 ∨ b2) = 1, thus s(b1) = 1 − α and s(b2) = 1 − β. Observing that t = (b⊥ ⊗
b⊥) ∨ (b1 ⊗ a1) ∨ (a1 ⊗ b2) ∨ (b2 ⊗ a2) ∨ (a2 ⊗ b1) is the supremum, in L∗, of
mutually orthogonal elements, we obtain: s∗(t) = γ 2 + (1 − α)α + α(1 − β) +
(1 − β)β + β(1 − α) = γ 2 + 1 − (1 − (α + β))2 = 1 + s(b⊥)2 − s(r)2. Since s∗

is a state on L∗, we have s∗(t) ≤ 1, hence s(b⊥) ≤ s(r). Since s(b → r⊥) =
s(b⊥) + s(b ∧ r⊥) = 1, it follows that s(b ∧ r⊥) + s(r) = s(r⊥ → b) = 1. Since
L admits a strong set of real-valued states, we conclude that q ′ ≤ r⊥ → b, hence
the above equation holds in L.

If we replace in equation E′
2, (cf. the remark after Theorem 6.1) on the left-

hand side of the inequality, b by b ∧ r⊥, the new equation obtained is equivalent
to E′

2, hence, since b ∧ r⊥ ≤ r⊥ → b, it follows that the equation above is a
consequence of E′

2, hence belongs to ERH .

Fig. 11.
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This equation does not belong to ER . Indeed, it is easy to verify that it fails
in the OML L′

2 (cf. Fig. 11), and we have proved that this OML admits a strong
set of real-valued states.

So, the equation obtained in this case in quite disappointing. It is not known
to us whether or not this method using the tensorial product is liable to produce
new equations.
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